G sLawmisy

Smart Contract
Security Audit Report

Table Of Contents

1 Executive Summary
2 Audit Methodology
3 Project Overview
3.1 Project Introduction
3.2 Vulnerability Information
4 Code Overview
4.1 Contracts Description
4.2 Visibility Description
4.3 Vulnerability Summary
5 Audit Result

6 Statement

1 Executive Summary

On 2022.03.25, the SlowMist security team received the Ruby Protocol team's security audit application for Ruby
Protocol, developed the audit plan according to the agreement of both parties and the characteristics of the project,

and finally issued the security audit report.

The SlowMist security team adopts the strategy of "white box lead, black, grey box assists" to conduct a complete

security test on the project in the way closest to the real attack.

The test method information:

Test method Description

Black box

N Conduct security tests from an attacker's perspective externally.
esting

. Conduct security testing on code modules through the scripting tool, observing the
Grey box testing . . o
internal running status, mining weaknesses.

White box Based on the open source code, non-open source code, to detect whether there are
testing vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical severity vulnerabilities will have a significant impact on the security of the DeFi

Critical
project, and it is strongly recommended to fix the critical vulnerabilities.
High High severity vulnerabilities will affect the normal operation of the DeFi project. It is
[
= strongly recommended to fix high-risk vulnerabilities.
Medi Medium severity vulnerability will affect the operation of the DeFi project. It is
edium
recommended to fix medium-risk vulnerabilities.
Low severity vulnerabilities may affect the operation of the DeFi project in certain
Low scenarios. It is suggested that the project team should evaluate and consider whether
these vulnerabilities need to be fixed.
Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Level Description

Suggestion There are better practices for coding or architecture.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated
analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

Serial Number Audit Class Audit Subclass
1 Overflow Audit =
2 Reentrancy Attack Audit -
3 Replay Attack Audit -
4 Flashloan Attack Audit =
5 Race Conditions Audit Reordering Attack Audit

Access Control Audit
6 Permission Vulnerability Audit
Excessive Authority Audit

Serial Number

10

11

12

13

14

15

16

Audit Class

Security Design Audit

Denial of Service Audit

Gas Optimization Audit

Design Logic Audit

Variable Coverage Vulnerability Audit

"False Top-up" Vulnerability Audit

Scoping and Declarations Audit

Malicious Event Log Audit

Arithmetic Accuracy Deviation Audit

Uninitialized Storage Pointer Audit

3 Project Overview

Audit Subclass

External Module Safe Use Audit

Compiler Version Security Audit

Hard-coded Address Security Audit

Fallback Function Safe Use Audit

Show Coding Security Audit

Function Return Value Security Audit

External Call Function Security Audit

Block data Dependence Security Audit

tx.origin Authentication Security Audit

3.1 Project Introduction

Project:

Ruby Protocol
Module:
contracts/amm
contracts/ruby_router

contracts/nfts

® RubyMasterChef.sol
® RubyMaker.sol

® RubyNFTAdmin.sol

RubyStaker.sol

Project Git:
https://github.com/RubyExchange/contracts
commit:
957f00297cd1f50d4f0f3c27f89ace795ebbbd3d
Fixed version:

ce1ae8ea80d50f35064f7f2d98cf8e644cb0e998

3.2 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category

_convert execution . . .
N1 - Design Logic Audit
may keep failing

Level

Suggestion

Status

Fixed

NO

N2

N3

N4

N5

NG

N7

N8

Title

Unexpected swap
fees

DoS issue

unused variable

Computational
precision problem

Missing event record

Risk of excessive
authority

Deflationary tokens
are not compatible

4 Code Overview

4.1 Contracts Description

Category

Others

Denial of Service
Vulnerability

Others

Others

Malicious Event
Log Audit
Authority Control
Vulnerability

Design Logic Audit

The main network address of the contract is as follows:

The code was not deployed to the mainnet.

4.2 Visibility Description

Level

Low

Suggestion

Suggestion

Suggestion

Suggestion

Low

Low

Status

Fixed

Fixed

Fixed

Ignored

Fixed

Ignored

Ignored

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

Function Name

<Constructor>

Visibility

Public

UniswapV2ERC20

Mutability

Can Modify State

Modifiers

_mint

_burn

_approve

_transfer

approve

transfer

transferFrom

permit

Function Name

<Constructor>

allPairsLength

pairCodeHash

createPair

setFeeTo

setMigrator

setPairCreator

setAdmin

UniswapV2ERC20

Internal Can Modify State
Internal Can Modify State
Private Can Modify State
Private Can Modify State
External Can Modify State
External Can Modify State
External Can Modify State
External Can Modify State
UniswapV2Factory
Visibility Mutability
Public Can Modify State
External =
External =
External Can Modify State
External Can Modify State
External Can Modify State
External Can Modify State
External Can Modify State

UniswapV2Pair

Modifiers

Function Name

getReserves

_safeTransfer

<Constructor>

initialize

_update

_mintFee

mint

burn

swap

_updateSwap

skim

sync

Function Name

initialize

_addLiquidity

addLiquidity

Visibility

Public

Private

Public

External

Private

Private

External

External

External

Private

External

External

UniswapV2Pair

Mutability

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

UniswapV2Router02

Visibility

Public

Internal

External

Mutability

Can Modify
State

Can Modify
State

Can Modify
State

Modifiers

lock

lock

lock

lock

lock

Modifiers

initializer

ensure

UniswapV2Router02

L , Can Modify
removeLiquidity Public ensure
State
i . Can Modify
removelLiquidityWithPermit External -
State
Can Modify
_swap Internal -
State
Can Modify
swapExactTokensForTokens External ensure
State
Can Modify
swapTokensForExactTokens External ensure
State
) Can Modify
_swapSupportingFeeOnTransferTokens Internal -
State
swapExactTokensForTokensSupportingFeeOn Can Modify
External ensure
TransferTokens State
quote Public - -
getAmountOut Public - -
getAmountin Public = =
getAmountsOut Public - =
getAmountsin Public = =
Can Modify
setFactory External onlyOwner
State
) Can Modify
setNftAdmin External onlyOwner
State
RubyNFT
Function Name Visibility Mutability Modifiers
initialize External Can Modify State initializer

mint

setMinter

setDescription

setVisualAppearance

Function Name

initialize

swap

_handlelnputToken

_handleOutputToken

_swapAmm

_swapStablePool

_increaseTokenAllowance

enableStablePool

disableStablePool

setAmmRouter

setNftAdmin

setMaxHops

External

External

External

External

RubyRouter

RubyNFT

Visibility

Public

Public

Private

Private

Private

Private

Private

Public

Public

Public

Public

Public

RubyMaker

10

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Mutability

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

onlyMinter

onlyOwner

onlyOwner

onlyOwner

Modifiers

initializer

onlyOwner

onlyOwner

onlyOwner

onlyOwner

onlyOwner

Function Name

<Constructor>

setBurnPercent

bridgeFor

setBridge

convert

convertMultiple

_convert

_convertStep

_swap

_toRUBY

Function Name

<Constructor>

poolLength

add

set

pendingTokens

rewarderBonusTokenInfo

Visibility

Public

External

Public

External

External

External

Internal

Internal

Internal

Internal

RubyMaker

Mutability
Can Modify State
Can Modify State
Can Modify State
Can Modify State
Can Modify State
Can Modify State
Can Modify State
Can Modify State
Can Modify State
RubyMasterChef
Visibility Mutability
Public Can Modify State
External =
Public Can Modify State
Public Can Modify State
External =
Public -

11

Modifiers

onlyOwner

onlyOwner

onlyEOA

onlyEOA

Modifiers

onlyOwner

onlyOwner

massUpdatePools

updatePool

deposit

withdraw

claim

_mintRubyRewards

emergencyWithdraw

setTreasuryAddr

setTreasuryPercent

setRubyStaker

updateEmissionRate

emergencyWithdrawRubyTokens

Function Name

initialize

calculateAmmSwapFeeDeduction

mintProfileNFT

setProfileNFT

setFreeSwapNFT

RubyMasterChef

Public

Public

External

External

External

Internal

External

Public

Public

Public

Public

External

RubyNFTAdmin

Visibility

Public

External

External

External

External

12

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Can Modify State

Mutability

Can Modify State

Can Modify State

Can Modify State

Can Modify State

nonReentrant

nonReentrant

nonReentrant

onlyOwner

onlyOwner

onlyOwner

onlyOwner

Modifiers

initializer

onylMinter

onlyOwner

onlyOwner

setMinter

Function Name

<Constructor>

setRewardMinter

addReward

approveRewardDistributor

_rewardPerToken

_earned

lastTimeRewardApplicabl

e

rewardPerToken

getRewardForDuration

claimableRewards

totalBalance

unlockedBalance

earnedBalances

lockedBalances

withdrawableBalance

Visibility

Public

External

Public

External

Internal

Internal

Public

External

External

External

External

External

External

External

Public

RubyNFTAdmin

External

RubyStaker

Mutability

Can Modify
State

Can Modify
State

Can Modify
State

Can Modify
State

13

Can Modify State

onlyOwner

Modifiers

onlyOwner

onlyOwner

onlyOwner

stake

mint

withdraw

getReward

exit

withdrawExpiredLocks

_notifyReward

notifyRewardAmount

recoverERC20

4.3 Vulnerability Summary

External

External

Public

Public

External

External

Internal

External

External

RubyStaker

Can Modify
State

Can Modify
State

Can Modify
State

Can Modify
State

Can Modify
State

Can Modify
State

Can Modify
State

Can Modify
State

Can Modify
State

[N1] [Suggestion] _convert execution may keep failing

Category: Design Logic Audit

Content

® contracts/RubyMaker.sol

If rubyRewards==0, the transaction will fail.

nonReentrant updateReward

onlyRewardMinter updateReward

nonReentrant updateReward

nonReentrant updateReward

updateReward

onlyRewardDistributor
updateReward

onlyOwner

function convert(address token0O, address tokenl) internal {

// Interactions

IUniswapV2Pair pair = IUniswapV2Pair(factory.getPair(token0O, tokenl));

require (address(pair)

!= address(0),

14

"RubyMaker: Invalid pair");

IERC20 (address(pair)).safeTransfer (address(pair),

pair.balanceOf (address(this)));

(uint256 amountO, uint256 amountl) = pair.burn(address(this));
if (token0 != pair.tokenO()) {

(amount0, amountl) = (amountl, amountO0);

}

uint256 totalConvertedRuby = convertStep(token0O, tokenl, amount0, amountl);

uint256 rubyToBurn = (totalConvertedRuby.mul(burnPercent)).div(100);

uint256 rubyRewards = totalConvertedRuby - rubyToBurn;

// Burn ruby
RubyToken (ruby) .burn (rubyToBurn) ;

rubyStaker.notifyRewardAmount (1, rubyRewards); //SlowMist//If rubyRewards==0,

the transaction will fail

emit LogConvert (msg.sender, token(O, tokenl, amountO, amountl, rubyRewards,

rubyToBurn) ;

}

Solution

In the case of rubyRewards=0, notifyRewardAmount can not be executed

Status

Fixed

[N2] [Low] Unexpected swap fees

Category: Others

Content

® contracts/amm/UniswapV2Pair.sol

Users can call swap by themselves and feeMultiplier can be setto 1000 to achieve 0 transaction fee.

function swap(

uint256 amountOOut,

15

uint256 amountlOut,
address to,

uint256 feeMultiplier,
bytes calldata data

) external lock {

require(amount0Out > 0 || amountlOut > 0, "UniswapV2:
INSUFFICIENT OUTPUT AMOUNT");
(uintl12 reserve0, uintll2 reservel,) = getReserves(); // gas savings

require(amountOOut < reserveO && amountlOut < reservel, "UniswapV2:
INSUFFICIENT LIQUIDITY");

require(feeMultiplier >= 997 && feeMultiplier <= 1000, "UniswapV2:
FEE MULTIPLIER");

uint256 balance0;
uint256 balancel;
{
// scope for token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _tokenl = tokenl;
require(to != token0 && to != tokenl, "UniswapV2: INVALID TO");
if (amountOOut > 0) _safeTransfer(_ tokenO, to, amountOOut); //
optimistically transfer tokens
if (amountlOut > 0) _safeTransfer(_ tokenl, to, amountlOut); //
optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call (msg.sender,

amountOOut, amountlOut, data);

balance0 IERC20Uniswap(_token0).balanceOf (address(this));

balancel IERC20Uniswap(_tokenl).balanceOf (address(this));

}

// function split to avoid stack too deep errors

_updateSwap(balance0, balancel, amount0Out, amountlOut, to, feeMultiplier);

Solution

If you want the fee to be expected by the project party, you can add a permission management to the swap call.
Status

Fixed

[N3] [Suggestion] DoS issue

16

Category: Denial of Service Vulnerability
Content
numRewards only increases and does not decrease. If the length of numRewards is too long, the updatereward

function will fail to execute and other functions cannot be executed.

modifier updateReward(address account) {

uint256 balance;

uint256 supply = lockedSupply;

rewardData[0].rewardPerTokenStored = rewardPerToken(0, supply);

rewardData[0].lastUpdateTime = lastTimeRewardApplicable(0);

if (account != address(0)) {
// Special case, use the locked balances and supply for stakingReward rewards
rewards[account][0] = earned(account, 0, balances[account].locked, supply);
userRewardPerTokenPaid[account][0] = rewardData[0].rewardPerTokenStored;

balance = balances[account].total;

supply = totalSupply;
for (uint256 i = 1; i <= numRewards; it++) {
rewardData[i].rewardPerTokenStored = rewardPerToken(i, supply);

rewardData[i].lastUpdateTime = lastTimeRewardApplicable(i);

if (account != address(0)) {
rewards[account][i] = _earned(account, i, balance, supply);
userRewardPerTokenPaid[account][i] = rewardData[i].rewardPerTokenStored;
}
}
}
Solution

The length of numRewards can be limited.
Status

Fixed

[N4] [Suggestion] unused variable

17

Category: Others

Content

migrator not used.

function setMigrator(address newMigrator) external override {
require (msg.sender == admin, "UniswapV2: FORBIDDEN");
migrator = newMigrator;

emit MigratorSet(newMigrator);

Solution
delete unused variables.
Status

Fixed

[N5] [Suggestion] Computational precision problem

Category: Others

Content

® contracts/RubyStaker.sol
unlockTime Dividing first and multiplying will result in precision error. The calculated

block.timestamp.div(rewardsDuration).mul(rewardsDuration) will be smaller than block.timestamp.

function stake(uint256 amount, bool lock) external nonReentrant
updateReward(msg.sender) {
require (amount > 0, "RubyStaker: Invalid staking amount");
totalSupply = totalSupply.add(amount);
Balances storage bal = balances[msg.sender];
bal.total = bal.total.add(amount);
if (lock) {
lockedSupply = lockedSupply.add(amount);
bal.locked = bal.locked.add(amount);

uint256 unlockTime =

18

block.timestamp.div(rewardsDuration) .mul (rewardsDuration).add(lockDuration);//SlowMis
t//Computational precision problem
uint256 idx = userLocks[msg.sender].length;
if (idx == | | userLocks[msg.sender][idx - 1].unlockTime < unlockTime) {
userLocks[msg.sender].push(LockedBalance({ amount: amount,
unlockTime: unlockTime }));
} else {
userLocks[msg.sender][idx - 1].amount = userLocks[msg.sender][idx -

1] .amount.add(amount) ;

}
} else {

bal.unlocked = bal.unlocked.add(amount);

}

rubyToken.safeTransferFrom(msg.sender, address(this), amount);

emit Staked(msg.sender, amount);

Solution
Calculate multiplication first before calculating division.
Status

Ignored; In line with project design decisions - the precision loss leads to withdrawal time grouping.

[N6] [Suggestion] Missing event record

Category: Malicious Event Log Audit

Content

® contracts/ruby_router/RubyRouter.sol

Modifying important variables in the contract requires corresponding event records.

function setAmmRouter (IUniswapV2Router02 newAmmRouter) public onlyOwner {
require (address (newAmmRouter) != address(0), "RubyRouter: Invalid AMM router
address.");

ammRouter = newAmmRouter;
}

function setNftAdmin(IRubyNFTAdmin newNftAdmin) public onlyOwner {
require (address (newNftAdmin) != address(0), "RubyRouter: Invalid NFT admin

19

address.");
nftAdmin = newNftAdmin;

function setMaxHops(uint256 maxSwapHops) public onlyOwner {
require (maxSwapHops > 0, "RubyRouter: Invalid max swap hops;");

_maxSwapHops = maxSwapHops;

Solution
Record key events.
Status

Fixed

[N7] [Low] Risk of excessive authority

Category: Authority Control Vulnerability
Content
The authority of the owner role is too large, and the modification of the owner can take effect immediately. Once the

private key is lost,attacker can cause losses to the project party by modifying the owner permissions.

® contracts/RubyMaker.sol

function withdrawLP (address pair) external onlyOwner {
require(pair != address(0), "RubyMaker: Invalid pair address.");
require(isContract(pair), "RubyMaker: pair is not a contract address.");
IERC20 pair = IERC20(pair);
uint256 pairBalance = pair.balanceOf(address(this));
_pair.safeTransfer(owner(), pairBalance);

emit PairWithdrawn(pair, pairBalance);

® contracts/RubyStaker.sol

function setRewardMinter(address rewardMinter) external onlyOwner {

require(_rewardMinter != address(0), "RubyStaker: Invalid new reward

20

minter.");
rewardMinter = rewardMinter;

emit RewardMinterSet (rewardMinter);

function mint(address user, uint256 amount) external override onlyRewardMinter
updateReward(user) {

totalSupply = totalSupply.add(amount);

Balances storage bal = balances[user];

bal.total = bal.total.add(amount);

bal.earned = bal.earned.add(amount);

uint256 unlockTime =
block.timestamp.div(rewardsDuration) .mul (rewardsDuration).add(lockDuration);

LockedBalance[] storage earnings = userEarnings[user];

uint256 idx = earnings.length;

if (idx == | | earnings[idx - 1].unlockTime < unlockTime) {
earnings.push(LockedBalance({ amount: amount, unlockTime: unlockTime }));
} else {
earnings[idx - 1].amount = earnings[idx - 1].amount.add(amount);
}

emit Staked(user, amount);

® contracts/RubyMasterChef.sol

function emergencyWithdrawRubyTokens (address receiver, uint256 _amount) external
onlyOwner {

require(_receiver != address(0), "RubyMasterChef: Invalid withdrawal
address.");

require(_amount != 0, "RubyMasterChef: Invalid withdrawal amount.");

require (RUBY.balanceOf (address(this)) >= _amount, "RubyMasterChef: Not enough
balance to withdraw.");

RUBY.safeTransfer(_receiver, _amount);

emit RubyTokenEmergencyWithdrawal(receiver, amount);

¢ contracts/RubyNFTAdmin.sol

21

function setProfileNFT(address newProfileNFT) external override onlyOwner {
require (newProfileNFT != address(0), "RubyNFTAdmin: Invalid profile NFT");
profileNFT = newProfileNFT;
emit RubyProfileNFTset (profileNFT);

function setFreeSwapNFT(address newFreeSwapNFT) external override onlyOwner {
require (newFreeSwapNFT != address(0), "RubyNFTAdmin: Invalid free swap NFT");
freeSwapNFT = newFreeSwapNFT;
emit FreeSwapNFTSet (freeSwapNFT) ;

function setMinter(address minter, bool allowance) external override onlyOwner {
require(minter != address(0), "RubyNFTAdmin: Invalid minter address");
minters[minter] = allowance;

emit MinterSet(minter, allowance);

Solution

It is recommended to transfer the permissions of roles with excessive permissions to governance contracts or

timelock contracts. At least multisig should be used.

Status

Ignored; The contract will be managed using a multi-signature account after release.

[N8] [Low] Deflationary tokens are not compatible

Category: Design Logic Audit

Content

® contracts/RubyMasterChef.sol
If the number of deflationary token records is smaller than the actual number of receipts, if malicious users
continue to deposit and withdraw, the pool of deflationary tokens will be exhausted,malicious users

can obtain excess revenue in the corresponding pid.

22

function deposit(uint256 pid, uint256 amount) external nonReentrant {

PoolInfo storage pool = poolInfo[pid];

UserInfo storage user userInfo[_ pid][msg.sender];
updatePool (_pid);
if (user.amount > 0) {
// Harvest accRubyPerShare
uint256 pending =
user.amount.mul (pool.accRubyPerShare) .div(ACC_TOKEN PRECISION).sub(user.rewardDebt);
_mintRubyRewards (msg.sender, pending);
emit Harvest(msg.sender, pid, pending);
}
user.amount = user.amount.add(_amount);
user.rewardDebt =
user.amount.mul (pool.accRubyPerShare) .div (ACC_TOKEN PRECISION) ;

IRubyMasterChefRewarder rewarder = poolInfo[_ pid].rewarder;

if (address(rewarder) != address(0)) {

rewarder.onRubyReward(msg.sender, user.amount);

pool.lpToken.safeTransferFrom(address(msg.sender), address(this), _amount);

emit Deposit(msg.sender, pid, amount);

Solution
Check the token balance before and after the recharge as the real recharge amount.
Status

Ignored; The project will not use deflationary tokens.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002204130002 SlowMist Security Team 2022.038.25 - 2022.04.13 Passed

23

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 3 low risk, 5 suggestion vulnerabilities.

24

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this
report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this
project, and is not responsible for them. The security audit analysis and other contents of this report are based on
the documents and materials provided to SlowMist by the information provider till the date of the insurance report
(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,
deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with
the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only
conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

sLawmisy

Official Website

www.slowmist.com

N\
E-mail
team@slowmist.com

L

Twitter
@SlowMist_Team

O

Github
https://github.com/slowmist

